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Terrestrial leeches have long been famous for their blood-feeding behavior, feeding on humans
who venture into wet forests across much of the Indo-Pacific. More recently these leeches have
emerged as a tool for detecting vertebrate diversity in conservation studies. Specifically, scientists
use DNA from the bloodmeals found in these leeches’ digestive tracts to identify mammals, rep-
tiles, amphibians, and birds they have fed on. Although this so-called invertebrate-derived DNA
(iDNA) technique has grown in popularity, few resources exist for researchers to gain familiarity
with these methods. Most researchers using these methods have a vertebrate conservation focus
and therefore may benefit from learning more about the leeches, which are variable and also poten-
tially in need of conservation. For this review, we focused on providing basic information on
iDNA best practices and precautions, and on Haemadipsidae leech background and taxonomy.
We hope this information empowers more people who live and study in the Indo-Pacific to work
with these blood-feeding worms.

Terrestrial blood-feeding leeches in the family Haemadipsidae
have recently been especially useful for surveying elusive verte-

brates (Fig. 1) (Weiskopf et al., 2018; Nguyen et al., 2021). The
method at a glance is as follows: leeches find us, we sequence
DNA from blood in their digestive tracts, and we detect verte-
brates from the general area in which we sampled—this research

is a form of invertebrate-derived DNA (iDNA) study. Over the
last decade, this method has turned the study of haemadipsid
leeches from a fringe topic (mostly pest control and systematics)
to an important matter for conservation surveys in the Indo-

Pacific. This review is a primer on Haemadipsidae leeches to bet-
ter equip researchers in leech-derived iDNA surveys of vertebrate
diversity and to encourage the study of these diverse and often

more colorful worms. We hope this information provides the
knowledge required for more non-specialists in countries across
the Indo-Pacific to perform this type of work.

iDNA

Blood-feeding invertebrates have emerged as attractive options

for sampling the DNA of the hosts on which they feed. In addition
to leeches, flies, mosquitoes, and ticks have been tested for their
ability to retain host DNA and for their utility as tools for conser-
vation (Calvignac-Spencer et al., 2013; Gogarten et al., 2020;

Danabalan et al., 2023; Fernandes et al., 2023). Digestive tract
contents from any blood-feeding leeches, aquatic or terrestrial, can

be used to determine the most recent meal or meals that the leech
has consumed (Williams et al., 2020) and probably remain viable

for several months (Fogden and Proctor, 1985; Schnell et al.,
2012). However, terrestrial leeches possess a number of traits that
make them especially effective for iDNA surveys of vertebrates.
These leeches can be abundant and easy to sample; they find you

as you walk (Fahmy et al., 2019). Because terrestrial leeches move
only short distances, a researcher can be fairly confident that the
host species was, at some point, nearby (Tessler et al., 2018c).
Most haemadipsids seem to be generalists, feeding on tetrapods

both large and small (Schnell et al., 2018).

VERTEBRATE SURVEYS AND CONSERVATION

Haemadipsid iDNA is a targeted form of environmental DNA
(eDNA), DNA that exists in the environment rather than being
extracted from tissue samples (Tessler et al., 2023). Like other

conservation-based eDNA methods (Beng and Corlett, 2020),
iDNA has its strong points. Leeches actively pursue a broad
array of vertebrates to feed on, “collecting” and conveniently

“sealing” the vertebrate DNA sample within their digestive tracts
(Wilting et al., 2022). Typically the leeches feed on host species
that spend time on the ground or in the understory, although at
least 1 lemur that was primarily arboreal was also detected by

using the iDNA method (Fahmy et al., 2023). Where leeches are
abundant, collection is easy and fast. The presence data collected
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from these leeches are a valuable conservation metric for evaluat-

ing protected-area management (Ji et al., 2022).
In a study in Bangladesh, camera traps and leech iDNA were

complementary methods for collecting data (Weiskopf et al.,

2018). Leech iDNA is especially helpful for getting clear species

identifications for cryptic or well-camouflaged species (Schnell

et al., 2012) and works equally well for large and small species

(Weiskopf et al., 2018). Camera traps often work well for only

large or small animals, depending on their setup (Glen et al.,

2013). Approximately 200 leeches collected across 4 days in

Bangladesh equaled the number collected across 99 nights of

camera trapping (Weiskopf et al., 2018). The Bangladesh study

used Sanger sequencing, and newer studies using metabarcoding

would surely increase the efficiency of bloodmeals detected per

leech further.
Of course, there are tradeoffs between camera traps and

iDNA. Cameras are often stolen and require at least 2 visits to an

area (setup and take down) to get data (Weiskopf et al., 2018;

Meek et al., 2019). However, camera traps can be set up any-

where and at any time of year, and data analysis does not require

molecular facilities (Sollmann, 2018; Kays et al., 2020). Leeches

are easy to collect (limited principally by how far you can walk or

drive and how many people are in the field), but data analysis

requires laboratories and computational capacity (e.g., Gen-

Bank’s Basic Local Alignment Search Tool) (Schnell et al., 2018).

Although many institutions are capable of sequencing and data

processing, less well-funded institutions may not be (Dalal et al.,

2023; Auge et al., 2024). Collection and export of leeches often

require permits from a given country, which can be challenging

(Hamer et al., 2021).
Although most iDNA work has been conducted on new speci-

mens collected for the task, other opportunities for use of iDNA

have been identified. Natural history museums contain biodiverse

collections ranging back 100 or more years (Krishtalka and Hum-

phrey, 2000; Winker, 2004). Although most specimens in historic

collections have been preserved in formaldehyde or formalin,

specimens collected in the last 20þ yr are often in ethanol, which

preserves DNA. Ethanol-stored specimens can contain viable

iDNA (Siddall et al., 2019) that can be used for iDNA studies of

organisms from localities where appropriate habitat no longer

exists due to expanding development. This approach may be par-

ticularly useful for evaluating historic tetrapod losses, although

we are unaware of studies focused on this issue.
Haemadipsid bloodmeals may be used to detect more than just

vertebrates. For instance, 6 virus families associated with humans

were detected from bloodmeal sequence pools from 2 terrestrial

leech species, suggesting that analysis of these leeches may be a

good way to survey for vertebrate viruses without having to dis-

turb or find the vertebrate hosts (Alfano et al., 2021). Other

researchers have also successfully used leech-derived iDNA to

track viral infections, including those from African swine fever

virus and mammalian viruses (Kampmann et al., 2017; Karalyan

et al., 2019).

FIELD AND LAB PROTOCOLS

Collecting specimens

In some places, terrestrial leeches can be abundant to the point

of overwhelming, whereas in other places they are hard to find

(Fig. 1A, C) (Fahmy et al., 2019). The diversity of leech species

may be high or low in either scenario (Nakano, 2017; Tessler

et al., 2018c). Season, elevation, forest type, and other biotic and

abiotic factors determine the abundance and species richness of

these leeches (Drinkwater et al., 2019). In 1 of the few studies on

the subject of abundance in Haemadipsa, higher humidity, being

closer to a river, and being on a trail were associated with a

higher number of individuals (Fogden and Proctor, 1985; Jam-

bari et al., 2022). Haemadipsids are found in the rainy season in

wet forests; dry forests make poor leech habitat (Fig. 1B) (Ken-

dall, 2012). Like many organisms (Lomolino, 2001), terrestrial

leech species often segregate by elevation. In our experience, mid-

to high-elevation areas have high leech species richness, but lower

Figure 1. Photos from Madagascar
showing a typical experience in the
field with leeches in the family
Haemadipsidae. (A) Chtonobdella leeches
in a plastic bag, (B) Mai Fahmy walking
through typical leech habitat in humid
rainforest, (C) Chtonobdella leech look-
ing for a bloodmeal. Color version avail-
able online.
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elevations can have higher abundance at least for certain species

(Nelaballi et al., 2022). Although haemadipsids avoid entering

water, they often aggregate near smaller streams or water sources

that are small enough not to disrupt contiguous canopy cover

(Jambari et al., 2022). Still, it is often unclear why they are abun-

dant or sparse.
While walking through the forest, watch the ground and low

vegetation for leeches (Drinkwater et al., 2019; Miler et al., 2019;

Nelaballi et al., 2022). Based on our experiences, we also suggest

the following tips. Boots provide some protection against snake

bites (Malhotra et al., 2021). Check your boots and clothing regu-

larly for leeches while walking (Kvist et al., 2014). Walking with

multiple people can help, especially when leeches are scarce.

Researchers walking at the back of the group will often encounter

more leeches, likely because the lead walker alerts dormant

leeches and continued movement attracts them. When leeches are

abundant, additional hands can help place the leeches that are

hard to handle into collection bags. Working with a local team

helps avoid undue risks, identify prime field sites, and promote

equitable fieldwork (Ramı́rez-Castañeda et al., 2022).
Leeches can be collected using formal sampling protocols (e.g.,

transects) or opportunistically (Tessler et al., 2018c; Fahmy et al.,

2019), depending on the research goal. Transects work where

leeches are abundant and relatively evenly distributed, such as

in wet forests with large and intact canopies and moist under-

stories (Drinkwater et al., 2020b). Forests with large popula-

tions of domesticated animals similarly may have abundant

leeches; however, most sequences will accordingly be of those

domesticated animals (Tessler et al., 2018c). Opportunistic sam-

pling may be better for habitats with fewer leeches (Fahmy

et al., 2023). Ultimately, the study question will dictate the best

approach.
While collecting in the field, leeches should be placed in small

plastic bags for storage until they can be preserved in a fixative

such as RNAlater or ethanol (Fig. 2A) (Abrams et al., 2019).

Leeches are often hard to handle; when you unstick 1 sucker—oral

(anterior) or caudal—they may stick the other sucker back on.

One trick is to gently roll the leech into a ball between your index

finger and thumb and then quickly place it in the bag. Leeches are

remarkably adept at escaping bags that are open for short periods,

such as when you open a bag to put the next specimen in.

Although leeches can be collected in a variety of containers other

than bags, we have found that plastic bags work well because they

are cheap, make it more difficult for leeches to escape, and take up

little space.
Human DNA contamination, such as from handling leeches,

can be a major problem when collecting leeches for iDNA studies

(Hanya et al., 2019). If bitten, do not use the leech for iDNA.

With Sanger sequencing, you will get human sequence only, wast-

ing time, reagents, and samples. With metabarcoding, you may

still get host animal sequences, but any human sequences will use

up valuable sequencing reads, including redundant sequences

that build confidence in your findings (Sims et al., 2014; Gruber,

2015). Human DNA contamination is equally if not more likely

to occur in the lab (Weyrich et al., 2019). Wearing nitrile or latex

lab gloves helps reduce human DNA exposure (Llamas et al.,

2017). Most studies do not report the percentage of sequences

from leech iDNA that are actually from humans; most research-

ers simply remove these data (e.g., Drinkwater et al., 2020a) or

use human-blocking probes to avoid human results (Schnell

et al., 2015). However, 1 study did include more explicit details of

the human sequences; most samples were either sika deer or

humans (Hayna et al., 2019). Although these researchers tried to

determine whether the human sequences were the result of human

bites or contamination, they could not fully disentangle the real

results.
When collecting leeches, be prepared for leech bites (Fig. 1C).

Shirts and pants should be tucked in to reduce bites (Parson,

1990). Bites are often painless, at worst resembling an itchy pin-

prick (Eom et al., 2023). After a haemadipsid leech has latched, it

will feed for a few to many minutes; it can consume up to 10þ
times its weight in blood (Phillips et al., 2020). The incision is

Figure 2. Photos of several key
leech processing steps in the field and
lab. (A) Haemadipsid leeches collected
into a small plastic bag, (B) leeches
being preserved in RNAlater, (C)
leech digestive tract being dissected
out (keeping caudal sucker and upper
portion of leech as a voucher) for later
DNA extraction. Color version avail-
able online.
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small but will bleed disproportionately because of the leech anti-

coagulants (Iwama et al., 2022). The leech will drop off after feed-

ing, but you can also remove it by sliding your fingernail or credit

card under the feeding sucker to release the suction (Joslin et al.

2017). Do not pull the leech aggressively because this can prompt

regurgitation into the incision (O’Dempsey, 2012).
Many countries require collection and specimen export permits

(Hamer et al., 2021). However, it is often unclear where to find

country, province, or state rules on permitting. Laws often do not

explicitly cover leeches, making this task more difficult. The best

solution is often to contact government officials or local collabo-

rators to ask for help. Permits also take time to be approved, so

apply months to 1 year in advance. The Nagoya Protocol is also

a valuable resource for those conducting biodiversity research

and should be consulted for recommended practices on data shar-

ing and transparency (United Nations, 2010).

Preserving specimens

Leeches can be preserved in a variety of fluids (Fig. 2B). Since

DNA sequencing technology became widely available, ethanol

has been considered the most flexible storage material (Shokralla

et al., 2010). For sequencing leech DNA, $95% ethanol is ideal

(Bely and Weisblat, 2006; Tessler et al., 2016); although subopti-

mal, drinking alcohol (e.g., 40% alcohol vodka) also works

(Pérez-Flores et al., 2016).
For morphological work, leeches require special care. Storage

in 70% ethanol provides greater specimen mobility for dissections

while preserving DNA and body shape (Marquina et al., 2021).

Before this final preservation, leeches should be relaxed by mov-

ing them slowly from water with a small amount of alcohol up to

a high concentration of alcohol, waiting for the leech to release

its muscular tension (Lai et al., 2011). As the leech relaxes, it

should be gently stretched out to reach its more normal (i.e., nei-

ther contracted nor extended) body length. Ideally, this is done

with soft forceps by carefully securing an end of the leech and

gently straightening the body.
For dissections or scanning electron microscopy, the leeches

are often transferred to 10% buffered (CaCl2) formalin and then

ultimately stored in 70% ethanol (Borda, 2006); however, forma-

lin-fixed specimens will not work well for DNA or RNA

sequencing.
In iDNA work, alternative preservatives such as RNAlater

provide consistently high-quality DNA (and even RNA for tran-

scriptomics) (Macagno et al., 2010; Fahmy et al., 2020). These

preservatives are not flammable, making shipping safer. Speci-

mens preserved in ethanol and RNAlater can vary in their viabil-

ity for iDNA (Tessler et al., 2018c; Fahmy et al., 2019, 2020).

Sanger sequencing may be best with ethanol specimens because

only the dominant bloodmeal is saved (Fahmy et al., 2019). How-

ever, with metabarcoding, specimens preserved in either ethanol

or RNAlater can be used, but RNAlater is usually a more attrac-

tive option because it better preserves multiple bloodmeals—up

to 4 have been found preserved in 1 leech (Fahmy et al., 2020).
Whenever possible, store well-preserved leech voucher speci-

mens at a museum or another collection that is available to

researchers (Huber, 1998). Metadata must include locality and

date, and information about habitat or even weather can be help-

ful (Phillips et al., 2019). Lack of voucher specimens or DNA

barcodes for leech study systems has been problematic, such as

for lab studies on Helobdella specimens that turned out to be

genetically divergent (Bely and Weisblat, 2006). Researchers

should refer to the Nagoya Protocol (United Nations, 2010),

which lays a framework for fair and equitable sharing of genetic

materials, to guide data-sharing practices. Doing so promotes

respect and inclusivity in biodiversity science.

Lab protocols and processing

Some iDNA projects may monitor just mammals, whereas oth-

ers may survey across vertebrates. These decisions influence lab

workflows, including tissue selection, prep, sample pooling, prim-

ers, and sequencing methods (Fahmy et al., 2019, 2020; Drink-

water et al., 2020a; Williams et al., 2020). For all protocols, con-

tamination avoidance should be taken seriously (Tessler et al.,

2023). DNA contamination can arise from human handling of

the leech, so researchers must wear gloves at all times. DNA con-

tamination across leech samples is also a serious issue because it

reduces the reliability of the results, as it does for any DNA-based

study (Ballenghien et al., 2017). The risk of cross-contamination

is particularly high while processing individual leeches for DNA

extraction because more handling of leeches, reagents, and tools

is required. Researchers must take care before any work to thor-

oughly clean lab surfaces with DNAaway or bleach, use UV radi-

ation on their tools, and use filter pipette tips (Tessler et al.,

2023). Similar caution must be taken between samples, and nega-

tive controls should be incorporated to minimize and track con-

tamination issues (Dickie et al., 2018).
Although time-consuming, removal of host DNA from leech

tissue improves results and keeps morphologically diagnostic por-

tions of the leech that can be vouchered (Fig. 2C) (Tessler et al.,

2018b). To remove host DNA, use a sterile blade, soft forceps,

and a dissecting microscope to slice off the posterior sucker.

Then, remove the posterior third of the leech anterior to this cut.

Bisect this segment, preserving half for future analyses and half

for DNA extraction (Fahmy et al., 2019). Re-sterilize surfaces

and tools between each leech dissection. When the dissection

technique is not used, digesting entire leeches for DNA extraction

works, and the DNA can still be used to identify the host and

leech (Schnell et al., 2012; Drinkwater et al., 2020a). Researchers

typically use Qiagen’s DNeasy Blood and Tissue Kit for iDNA

digestions before extraction (Williams et al., 2020; Lynggaard

et al., 2022; Saranholi et al., 2024), but other options are available

(Casquet et al., 2012; Kocher et al., 2017). In the Qiagen kit, for

instance, proteinase K is used for digestion.
Dissection and digestion are followed by any type of tradi-

tional DNA extraction, such as Qiagen’s DNeasy Blood and Tis-

sue Kit or other extraction methods used for eDNA (Cunning-

ham et al., 2024). Extracting bloodmeal DNA from individual

leeches separately (Weiskopf et al., 2018; Schnell et al., 2018) or

by combining tissues and extracting DNA from pooled samples

have both been tested (Drinkwater et al., 2020a; Williams et al.,

2020; Fahmy et al., 2023). Both methods work, but for larger

studies blending numerous dissected leech tissues (a form of pool-

ing) prior to extraction may be most efficient (Fahmy et al.,

2023). Of course, there is a trade-off when it comes to pooling

samples. Researchers risk losing the ability to detect DNA found

in small quantities at the cost of being able to process a higher

quantity of samples. Hanya et al. (2019) discussed this trade-off

in the context of iDNA, stating that the ability to track leech
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bloodmeals from individuals is lost when pooling samples for

next-generation sequencing. Sanger sequencing or individual tag-
ging with short nucleotide identifiers may be options depending
on the research question (Shokralla et al., 2014).
Once bloodmeal DNA is extracted, various genomic regions

are amplified by PCR, purified, and sequenced. In early studies,
Sanger-based sequencing was used, which must be done on
extractions from single leeches (Schnell et al., 2012; Weiskopf
et al., 2018). In more recent studies, next-generation sequencing

typically has been used; metabarcoding of pooled samples gener-
ates far more data per DNA sequencing run and works better for
the typically degraded iDNA (Schnell et al., 2018; Fahmy et al.,

2020; Wilting et al., 2022). More data are efficiently generated
when using metabarcoding rather than Sanger sequencing. Pool-
ing multiple samples for sequencing in a meaningful way (i.e.,

with respect to leech species or locality) reduces the need for
tracking specimens in a sample (Fahmy et al., 2020).
Any primer used should amplify only a short region of DNA

(typically less than 250 base pairs) because (1) bloodmeal data are
likely degraded and (2) short fragments work best with Illumina

sequencing (Tessler et al., 2023). We are unaware of long-read
next-generation sequencing technologies being used for leech
iDNA studies. Primer selection is mainly dictated by the study

objectives. Some researchers may be primarily interested in sur-
veying mammals, in which case they will use a mammal-specific
primer set. Primer sets thus far have often focused on the follow-

ing loci: 16S for mammals (Tessler et al., 2018c; Weiskopf et al.,
2018), 12S for vertebrates (Siddall et al., 2019), cytochrome oxi-
dase I (COI) for reptiles (Nagy et al., 2012), CytB for mammals
(Abrams et al., 2019; Axtner et al., 2019), and ND2 for birds

(Payne and Sorenson, 2007; Fahmy et al., 2020). With next-gener-
ation sequencing, multiple primers can be pooled for sequencing,
and the data can be separated bioinformatically (Axtner et al.,

2019; Fahmy et al., 2020). Although some researchers have effec-
tively blocked a portion of human DNA contamination with
human-blocking probes (Boessenkool et al., 2012; Schnell et al.,

2018), this method takes time and may co-block target taxa such
as primates (Piñol et al., 2014). Primers for Illumina sequencing
have added adapter tags that are needed for sequencing setup.
The primers may also have nucleotide barcodes for multiplexing

of samples, which allows multiple samples (pooled or unpooled)
to be used in a single sequencing run (Drinkwater et al., 2020a).
After sequence data have been generated, basic steps must be

followed for data cleaning and assembling contigs. For Sanger

sequence data, traditional protocols are well established, and pro-
grams such as Geneious make this workflow straightforward
(Tessler et al., 2018c). For next-generation sequencing reads and

the large quantity of data produced, bioinformatic strategies are
needed (Fahmy et al., 2020).
For the type of next-generation sequencing amplicon data typi-

cally generated for iDNA, the first step is to remove low-quality
sequences and trim off adaptors and low-quality reads at either

end of otherwise high-quality sequences (e.g., using Trimmo-
matic) (Bolger et al., 2014). These data are then merged, assuming
paired-end reads were produced, and often clustered by similarity

(e.g., using VSEARCH) (Rognes et al., 2016). The processed data
are then compared with databases to determine what species the
sequences most likely match. Comparisons can range from

straightforward queries on GenBank or the International Bar-
code of Life (Lynggaard et al., 2022) to queries against custom

databases using more advanced protocols such as ObiTools

(Boyer et al., 2016). Much of this setup has been described in

other articles that focus on the metabarcoding of animals or

microbes (Axtner et al., 2019; Hakimzadeh et al., 2023; Tessler

et al., 2023).

ECOLOGY AND BIOLOGY

We know little about the ecology or biology of terrestrial

leeches (Drinkwater et al., 2020b; Nelaballi et al., 2022; Fahmy

and Tessler, 2024). Questions remain regarding aspects such as

life histories, reproduction, intraspecific interactions, dispersal

abilities, interactions with other organisms that they do not feed

on, and feeding behaviors. With iDNA we are learning more,

especially about leech diets (Tessler et al., 2018c). We suspect that

iDNA has also raised interest in terrestrial leeches; more recent

studies on basic behaviors such as locomotion, respiration, and

sensory mechanisms have been published (Phillips et al., 2020;

Fahmy and Tessler, 2024).

Diet

Haemadipsids seem to vary somewhat in their host preferences

(Fig. 3). For many if not most Haemadipsa species, the most fre-

quent meal is mammals (Schnell et al., 2018; Tessler et al., 2018c).

Some species occasionally feed on birds, reptiles, and amphibians,

but this behavior may be common for Chtonobdella species

(Rocha et al., 2012; Schnell et al., 2018; Fahmy et al., 2020). Mal-

agasy Chtonobdella feed broadly across vertebrate taxonomic

groups (Fahmy et al., 2019, 2020). Records exist of Tritetrabdella

feeding on frogs (Nakano and Sung, 2014) along with terrestrial

Figure 3. Photos by Franck Rabenahy of some of the vertebrates
found in leech iDNA surveys of Madagascar. (A) Calumma oshaugnessyi,
(B) Compsophis infralineatus, (C) Atelornis pittoides, (D) Gephyromantis
spiniferus, (E) Lemur catta, and (F) Galidia elegans. Color version avail-
able online.
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leeches from the Philippines (Maglangit et al., 2020). Some hae-

madipsids are specialists, such as Sinospelaeobdella species that

feed on bats (Yang et al., 2009; Huang et al., 2019) or Chtonob-

della c.f. grandidieri that acts as an endoparasite of frogs in Papua

New Guinea (Mann and Tyler, 1963). However, some species

that feed on multiple hosts may have strong host preferences.

Haemadipsa japonica seemingly favors Sika deer and may have

spread along with its host (Hanya et al., 2019; Morishima et al.,

2020). Two sympatric Haemadipsa species from Borneo appear to

partition their feeding preferences; Haemadipsa picta feeds on a

variety of hosts, whereas Haemadipsa sumatrana focuses on

rodents (Drinkwater et al., 2019).

Behavior

Haemadipsids thrive in moist environments, moving in a loop-

ing or inchworm-like motion (Fahmy and Tessler, 2024). They

move quickly in this way but still take a long time to traverse the

terrain. Although debates continued for over a century as to

whether these leeches jump, we captured video showing that at

least 1 species, Chtonobdella fallax, can jump (Fahmy and Tessler,

2024). Haemadipsids also cannot swim but sink to the bottom

and then crawl out of the water (Phillips et al., 2020).
Some work has been done on the feeding behavior of haema-

dipsids. Haemadipsa species gained up to 14 times their body

weight in human blood; could be kept in captivity for over

200 days, suggesting that they are not short-lived; and had a dor-

mant period after eating, sometimes laying eggs during this

period (Fogden and Proctor, 1985). In 1 study, H. picta seemed

to wrestle to deal with territorial disputes (Peryga and Miler,

2019). In other studies on H. picta, larger individuals climbed

higher on vegetation in a quest for prey but were found more con-

sistently on man-made trails than off trails (Gąsiorek and Róży-
cka, 2017; Miler et al., 2019). Haemadipsa picta feeding time also

appears to be partitioned by size, with larger individuals tending

to hunt in the morning and the smaller juveniles hunting consis-

tently throughout the day (Gąsiorek and Różycka, 2017). In an 8

yr study of 2 Haemadipsa species, species tended to separate

largely based on soil moisture and other moisture-based factors

such as rainfall history from lowland to upland forests (Nelaballi

et al., 2022). Soil moisture is linked to canopy cover, and regard-

less of season detection probability for Haemadipsa species is pos-

itively correlated with canopy height (Drinkwater et al., 2020b).

Disease and endosymbionts

Leeches have close relationships with many organisms. Like

other blood-feeding parasites, leeches are known to be a vector

for other parasites (Siddall and Desser, 1992, 2001; Karlsbakk,

2004). Leeches also harbor specialized bacteria that digest blood-

meals (Neupane et al., 2019). Parasites of terrestrial leeches are

generally less well studied than those of aquatic leeches, but ter-

restrial leeches certainly do have these symbioses.
Haemadipsids are associated with a unique lineage of Trypano-

soma parasites (Hamilton and Stevens, 2011; Siddall et al., 2019).

Leeches appear to be the only known organisms to house certain

mammal trypanosomes and thus are the most probable vector

(Hamilton and Stevens, 2011). These trypanosomes are not

closely related to species vectored by aquatic leeches (Hamilton

et al., 2007).

Haemadipsids are also linked to a variety of bacteria, such as

the gut-associated Rikenellaceae, alpha- and beta-proteobacteria,

Corynebacteriales, Firmicutes, and Prevotellaceae (Siddall et al.,

2019). Terrestrial leeches are linked to at least 1 bacterial genus

known to cause human illness. Bartonella was found in several

surveyed Haemadipsa rjukjuana specimens (Kang et al., 2016).

However, it is unclear whether these leeches can vector these bac-

teria. One bacterial infection caused by Rickettsia japonica seems

to have been acquired from a terrestrial leech (Sando et al., 2019).
Haemadipsid leeches also can attach in unpleasant places. Ocu-

lar attachments have been reported for haemadipsids and other

leeches, albeit infrequently (Lewis and Coombes, 2006; Phillips

et al., 2020). However, we have heard of other ocular attachments

by terrestrial leeches, suggesting this phenomenon is more com-

mon than reported. There is a published case of a haemadipsid

attaching to both the eye and the rectum of a patient in China

(Xu, 1995). Chtonobdella palmyrae has been found in seabird

eyes, suggesting a mechanism for the broad distribution of Chto-

nobdella (Nakano et al., 2020).

Anatomy

Studies of terrestrial leech anatomy have focused on identifying

species and clades (Borda et al., 2008; Tessler et al., 2018b). How-

ever, some work has been done on aspects of the reproductive

anatomy and blood of haemadipsids. One study covered the her-

maphroditic reproductive anatomy of terrestrial leeches in the

families Haemadipsidae and Xerobdellidae (Borda et al., 2008).

In another study, the female anatomy of H. japonica appeared to

generally be consistent with that of other haemadipsids and even

members of the Clitellata generally (Urbisz et al., 2020). A study

on leech spermatozoa revealed similarities but also notable differ-

ences in structure between Haemadipsa zeylanica and 2 distantly

related glossiphoniiform leeches (Ahmed et al., 2015). As for

leech blood, efforts have focused on the primary structure of

leech hemoglobins (Shishikura, 2004).

Salivary compounds

Leech salivary compounds have also been studied, largely

because leech saliva contains bioactive compounds such as anti-

coagulants that make leech bites bleed for long periods of time

(Iwama et al., 2021, 2022). Leech anticoagulants furthermore are

rather diverse and appear to be ancestral (Iwama et al., 2021,

2022). In an early study of anticoagulant peptides in leeches, hae-

madin, which inhibits thrombin, was isolated from Haemadipsa

sylvestris, and antithrombin research with this species continues

(Strube et al., 1993; Lai et al., 2019). Another molecule isolated

from H. sylvestris inhibits inflammation in mice by reducing cyto-

kine production (Liu et al., 2016). A transcriptomic study of sali-

vary compounds from Haemadipsa interrupta revealed 20 pep-

tides of interest, some of which may block coagulation along

several pathways (Kvist et al., 2014). In another transcriptomic

study, differential regulation of genes compared with 2 other

leeches was found (Liu et al., 2018). A study of H. sylvestris saliva

revealed sodium channel inhibitors that may act as an analgesic,

preventing both host pain and host detection of the leech (Wang

et al., 2018), a property that is often considered but has been diffi-

cult to prove for leeches generally.
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SYSTEMATICS

Phylogenetics overview

The broad relationships within terrestrial leeches appear to be

reasonably well established, although much work remains in

understanding the relationships across the Haemadipsidae (Borda

et al., 2008; Borda and Siddall, 2010; Tessler et al., 2016, 2018a).

Molecular phylogenetics has helped to clear up some of the con-

fusion that had existed for the classification of these leeches. For

instance, the first major study revealed that several genera had

incorrectly been considered haemadipsids, and these genera were

moved to the family Xerobdellidae (Borda et al., 2008). The next

large effort at molecular phylogenetics helped establish that

2-jawed (duognathous) leeches form a clade that evolved from

3-jawed (trignathous) leeches (Borda and Siddall, 2010). Those

study results further clarified that there are 2 (3-jawed) haemadip-

sid clades: 1 for Haemadipsa and 1 for Tritetrabdella plus “Hae-

madipsa” cavatuses (Borda and Siddall, 2010). Given that this

phylogeny made Haemadipsa non-monophyletic, H. cavatuses

along with another new species were put into the genus Sinospe-

laeobdella (Huang et al., 2019).
A subsequent phylogenetic effort focused on the 2-jawed

leeches and established a new taxonomy: a single genus—Chto-

nobdella—is now used instead of the prior 31 genera that were

either monotypic or non-monophyletic (Tessler et al., 2016). The

next substantial study focused on the genus Haemadipsa but pro-

duced more questions than answers, indicating a large amount of

undescribed diversity and the importance of revisionary work

being done at the species level (Tessler et al., 2018c). Those results

also suggested that at least for the most well-sampled species

(Haemadipsa trimaculosa), geographically separated populations

are genetically distinct (Tessler et al., 2018c). Other researchers

have also found population-level distinctions among H. japonica

(Morishima and Aizawa, 2019; Sato et al., 2019). Several primer

sets have been used for phylogenetic studies on leeches or for bar-

coding leeches for identification, although COI is often the most

useful when focusing on only 1 locus. A longer primer set was

used to amplify longer COI fragment in leeches (Tessler et al.,

2018a, 2018c).

Taxonomy

The taxonomic ranks of class through order for haemadipsid

leeches are based on the taxonomy outlined by Tessler et al.

(2018a). This classification does not include Rhynchobdellida and

Arhynchobdellida because Rhynchobdellida is likely paraphyletic

(Tessler et al., 2018a).
Class: Clitellata Michaelsen, 1919.
Subclass: Hirudinea Lamarck, 1818.
Order: Hirudinida Siddall et al., 2001.
Suborder: Hirudiniformes Caballero, 1952.
Family: Haemadipsidae Blanchard, 1893. The family comprises

4 accepted genera: Chtonobdella Grube, 1866; Haemadipsa Ten-

nent, 1859; Sinospelaeobdella Liu, Huang & Liu, 2019; and Trite-

trabdellaMoore, 1938.
Chtonobdella: All 40þ described 2-jawed leeches were recently

placed into the genus Chtonobdella (Tessler et al., 2016). The

members of the genus are morphologically variable and geo-

graphically dispersed, which is likely why members of this now

single genus used to be in 31 mostly monotypic genera (sometimes

further divided into multiple families, up to 3, and subfamilies,

up to 4). Although other genera in the Haemadipsidae have a

fixed number of annuli per mid-body somite, Chtonobdella species

vary significantly (4–7) in annuli per mid-body somite (Borda and

Siddall, 2010). The molecular data suggest that these morphologi-

cal characters in this genus are simply more variable than they

are for other genera (Tessler et al., 2016). Having 1 genus for

2-jawed leeches made this genus more comparable to Haema-

dipsa, the other species-rich genus in the Haemadipsidae (Tessler

et al., 2016).
Haemadipsa: This genus is the largest group of 3-jawed leeches,

all of which have 5 annuli per mid-body somite. Over 25 species

have been described, which is an underestimate of the true diver-

sity (Borda and Siddall, 2010; Lai et al., 2011; Tessler et al.,

2018c). A number of species appear to be difficult to identify,

having similar external appearances despite being genetically dis-

tant (Tessler et al., 2018b). Gonopores are separated by 5 annuli

(Borda and Siddall, 2010).
Sinospelaeobdella: This 3-jawed genus includes 2 species, Sino-

spelaeobdella cavatuses and Sinospelaeobdella wulingensis. Both

species live in caves in China (and likely elsewhere, such as Laos)

and feed on bats (Borda and Siddall, 2010; Huang et al., 2019).

Gonopores are separated by 2 annuli, but as in Haemadipsa these

species have 5 annuli per mid-body somite (Huang et al., 2019).
Tritetrabdella: This 3-jawed genus consists of 4 species: Trite-

trabdella kinabaluensis found in Borneo; Tritetrabdella longiducta

found in Thailand and Vietnam; Tritetrabdella taiwana found in

China, Taiwan, and Hong Kong; and Tritetrabdella scandens

found in Malaysia and Thailand (Kappes, 2013; Nakano et al.,

2016). These leeches are generally known to feed on amphibians

and mammals (Lai et al., 2011). Species in this genus are distinct

from other 3-jawed haemadipsids in having 4 annuli per mid-

body somite. The location of gonopores and number of annuli

separating gonopores ranges from 3.5 to 4 (Nakano et al., 2016;

Huang et al., 2019).

FUTURE DIRECTIONS

iDNA

Many creative studies have been done and continue to be done

relating to leech iDNA. At this point we think much of the work

is simply applying what is known to a broader swath of habitats

and questions, essentially doing the conservation work with

iDNA rather than figuring out how iDNA works as a tool. Still,

use of iDNA presents an opportunity to obtain more locality

data for difficult-to-study or even common taxa (Morishima

et al., 2020), which can then be used to better estimate distribu-

tions of these vertebrate species through methods such as species

distribution modeling (Tilker et al., 2020). These data also can be

leveraged in other creative conservation pursuits, such as deter-

mining the effectiveness of given preserves (Ji et al., 2022).

Although more complex, shotgun metagenomics could be used in

creative ways to further explore the leech, its symbionts, and its

bloodmeals in unison (Siddall et al., 2019).

Revision of Haemadipsa

There are many possible future directions for studies of terres-

trial leeches. We believe the most critical need is work on the spe-

cies-level taxonomy within the genus Haemadipsa. Haemadipsa is
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1 of the 2 most species-rich genera in the family Haemadipsidae,

is especially widespread, and is the focus of most iDNA work,

and yet many of the morphological descriptions are problematic

for Haemadipsa leeches (Tessler et al., 2018c). In addition to tra-

ditional dissections, CT and histology can be used to help discern

morphology (Tessler et al., 2016). Even basic external morphol-

ogy that is consistently documented will help, especially when

coupled with DNA sequences (e.g., COI barcodes). When these

morphological efforts are insufficient to discern species or clades,

then molecular morphology may be employed (Tessler et al.,

2022).

Genomes

Two transcriptomes now exist (Kvist et al., 2014; Liu et al.,

2018) for haemadipsid species. These transcriptomes coupled

with the recently sequenced draft genomes of Hirudo medicinalis

(Babenko et al., 2020; Kvist et al., 2020), Hirudo verbana (Paulsen

et al., 2020), and Hirudinaria manillensis (Guan et al., 2020) put

researchers in a good position to start sequencing and annotating

more leech genomes. Haemadipsid species are good candidates,

given their utility for conservation and unique attributes (e.g.,

often mammal-focused diets and terrestrial lifestyles). Sequencing

of genomes and transcriptomes facilitates the study of leech adap-

tations and responses to climate change, helps disentangle their

evolutionary relationships, and improves our understanding of

leech biology overall (Dunn and Ryan, 2015). These data are also

critical for making informed conservation decisions (McMahon

et al., 2014).

Community science

A great deal of background information can be obtained on

the distribution and morphology of haemadipsids using records

collected by non-academics. People who encounter a leech during

fieldwork, vacation, or local outings can take pictures with GPS

coordinates and upload the data to websites such as iNaturalist

(inaturalist.org) (Unger et al., 2020). This type of data will surely

better our understanding of these leeches, because their distribu-

tions have been studied by only a handful of specialists doing

patchwork surveys. Currently, over 3,500 observations of Hae-

madipsidae leeches have been added to iNaturalist, covering a

portion of the species and distributions. People living near forests

in the range of these leeches spend a significant amount of time

interacting with these blood feeders, and we expect that the

increasing numbers of leech observations obtained through com-

munity science will be important for this understudied group

(Fahmy and Tessler, 2024).

Conservation

Although terrestrial leeches are often reviled and several stud-

ies have focused on how to exterminate them (Sasaki and Tani,

1997; Kirton, 2005; Vongsombath et al., 2011; Watanabe, 2018,

2019), they are a common component of biodiversity in many

regions of the world, and it is wise to conserve them much as we

conserve other organisms (Carlson et al., 2017, 2020). This con-

servation is important given that these animals are increasingly

collected for the iDNA surveys described above, which after sus-

tained collection could impact leech numbers (Drinkwater et al.,

2019). Although many haemadipsid species are widespread, most

are poorly studied and many are uncommon and restricted geo-

graphically (Borda and Siddall, 2010; Tessler et al., 2016, 2018c).

There appear to be many species and many distinct genetic line-

ages that we have yet to discover (Eom et al., 2023).
Few of the rarer leech species are well documented enough to

have a sense of their population stability. Some leeches may have

gone extinct since their description; the increased numbers of

extinctions in the Anthropocene are an important topic of study

and concern (Turvey and Crees, 2019). We are aware of only 1

study in which a quantitative attempt was made to assess whether

a leech was extinct, along with the implications for conservation

(Carlson and Phillips, 2020). The species studied (Macrobdella

sestertia), if extant, has been given protection status in some US

states. In most other studies, examinations of leech rarity have

focused on the so-called medicinal leeches in the genus Hirudo,

which were extensively harvested for medical practices (Trontelj

and Utevsky, 2005; Utevsky et al., 2010). Both H. verbena and H.

medicinalis are indeed under protection by CITES and some

European countries (Carlson et al., 2020). Xerobdella lecomtei, a

leech in another family of terrestrial leeches that lives in Europe,

appears to be exceptionally rare and may be endangered (Kut-

schera et al., 2007).
Parasite conservation has begun shifting from a joke to a seri-

ous matter. Articles now highlight the need for the conservation

of parasites, how climate change is adversely impacting these spe-

cies, and how to determine best conservation practices (Carlson

et al., 2017, 2020; Eom et al., 2023).

Preliminary work indicates that terrestrial leeches differ based

on human-modified habitat (Kendall, 2012). However, without a

variety of studies across both common and rare species of terres-

trial leeches, we are largely unaware of their standing. It is most

likely that leeches reliant on pristine habitats are experiencing

population declines or worse. We strongly hope that further

research is conducted on this topic.
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